$$\mathcal {F}$$ F -finite embeddabilities of sets and ultrafilters
نویسندگان
چکیده
منابع مشابه
On socle and Property (A) of the f-ring $Frm(mathcal{P}(mathbb R), L)$
A topoframe, denoted by $L_{ tau}$, is a pair $(L, tau)$ consisting of a frame $L$ and a subframe $ tau $ all of whose elements are complementary elements in$L$. $f$-ring $mathcal{R}(L_{ tau})$ is equal to the set $${fin Frm(mathcal{P}(mathbb R), L): f(mathfrak{O}(mathbb R))subseteq tau} .$$ In this paper, for every complemented element $ain L$ with $a, a'...
متن کاملPolylogarithmic Approximation Algorithms for Weighted-$\mathcal{F}$-Deletion Problems
Let F be a family of graphs. A canonical vertex deletion problem corresponding to F is defined as follows: given an n-vertex undirected graph G and a weight function w : V (G)→ R, find a minimum weight subset S ⊆ V (G) such that G− S belongs to F . This is known as Weighted F Vertex Deletion problem. In this paper we devise a recursive scheme to obtain O(logO(1) n)-approximation algorithms for ...
متن کاملOn Property (A) and the socle of the $f$-ring $Frm(mathcal{P}(mathbb R), L)$
For a frame $L$, consider the $f$-ring $ mathcal{F}_{mathcal P}L=Frm(mathcal{P}(mathbb R), L)$. In this paper, first we show that each minimal ideal of $ mathcal{F}_{mathcal P}L$ is a principal ideal generated by $f_a$, where $a$ is an atom of $L$. Then we show that if $L$ is an $mathcal{F}_{mathcal P}$-completely regular frame, then the socle of $ mathcal{F}_{mathcal P}L$ consists of those $f$...
متن کاملOn weakly $mathfrak{F}_{s}$-quasinormal subgroups of finite groups
Let $mathfrak{F}$ be a formation and $G$ a finite group. A subgroup $H$ of $G$ is said to be weakly $mathfrak{F}_{s}$-quasinormal in $G$ if $G$ has an $S$-quasinormal subgroup $T$ such that $HT$ is $S$-quasinormal in $G$ and $(Hcap T)H_{G}/H_{G}leq Z_{mathfrak{F}}(G/H_{G})$, where $Z_{mathfrak{F}}(G/H_{G})$ denotes the $mathfrak{F}$-hypercenter of $G/H_{G}$. In this paper, we study the structur...
متن کاملCONNECTED AND DISCONNECTED PLANE SETS AND THE FUNCTIONAL EQUATION f(x)+f(y)=f(x+y)
Cauchy discovered before 1821 that a function satisfying the equation ƒ(*)+ƒ (y) =f(* + y) is either continuous or totally discontinuous. After Hamel showed the existence of a discontinuous function satisfying the equation, many mathematicians have concerned themselves with problems arising from the study of such functions. However the following question seems to have gone unanswered : Since th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Mathematical Logic
سال: 2016
ISSN: 0933-5846,1432-0665
DOI: 10.1007/s00153-016-0489-4